جواب های اول معادله

golsefatan

New Member
ارسال ها
331
لایک ها
264
امتیاز
0
#1
تمام جواب های معادله
را در محدوده اعداد اول بیابید.
 

math1998

New Member
ارسال ها
336
لایک ها
224
امتیاز
0
#2
پاسخ : جواب های اول معادله

هر3تا که نمیتونن فرد باشن پس یا r یا q زوج یعنی 2 هستن بعد معادله رو به پیمانه ی 4 حساب کنید میبینید جواب نداره.
 

golsefatan

New Member
ارسال ها
331
لایک ها
264
امتیاز
0
#3
پاسخ : جواب های اول معادله

هر3تا که نمیتونن فرد باشن پس یا r یا q زوج یعنی 2 هستن بعد معادله رو به پیمانه ی 4 حساب کنید میبینید جواب نداره.
ممنون از حل شما ...
حال مساله روبرو را برای اعداد اول حل کنید
 

math1998

New Member
ارسال ها
336
لایک ها
224
امتیاز
0
#4
پاسخ : جواب های اول معادله

ممنون از حل شما ...
حال مساله روبرو را برای اعداد اول حل کنید
یه راهنمایی کنید. به هر پیمانه ای زنم اندر باب هیچ نیست چه کنم هیچ عدد اولی جواب نیست
 

golsefatan

New Member
ارسال ها
331
لایک ها
264
امتیاز
0
#5
پاسخ : جواب های اول معادله

یه راهنمایی کنید. به هر پیمانه ای زنم اندر باب هیچ نیست چه کنم هیچ عدد اولی جواب نیست
فعلا اين را حل كنيد

بعد به سراغ آن سوال هم مي رويم...
 

math1998

New Member
ارسال ها
336
لایک ها
224
امتیاز
0
#6
پاسخ : جواب های اول معادله

خب q باید 3 باشه و بعد اگه p>2 باشه طرف چپ بر 9 بخشپذیره پس r برابر 3[SUP]k[/SUP] باید باشه گه بوضوح جواب نداره اگه p=2 باشه که بازهم جواب نداره.
 

golsefatan

New Member
ارسال ها
331
لایک ها
264
امتیاز
0
#7
پاسخ : جواب های اول معادله

خب q باید 3 باشه و بعد اگه p>2 باشه طرف چپ بر 9 بخشپذیره پس r برابر 3[SUP]k[/SUP] باید باشه گه بوضوح جواب نداره اگه p=2 باشه که بازهم جواب نداره.
راست ميگيد چه قدر سوال آسوني طرح كردم. ان قدر درگير هم نهشتي 8 بودم! كه فراموش كردم هم نهشتي 3 را ...
 

math1998

New Member
ارسال ها
336
لایک ها
224
امتیاز
0
#9
پاسخ : جواب های اول معادله

سوال قبلي به اين سوال تغيير پيدا كرد:
اول اگه P فرد باشه پس توان 3 زوج میشه و میتونیم طرف چپ رو به صورت اتحاد مزدوج بنویسیم که نتیجه میشه طرف چپ بر 4 بخش پذیره پس r هم باید 2 باشه و 2r[SUP]5[/SUP]=64 و 3 حالت پیش میاد که به راحتی میشه چک کرد که جواب نداره .اگر p زوج باشه برابر 2 و 3[SUP]3p+1[/SUP]=3[SUP]7[/SUP] به پیمانه ی 4 معادله رو بگیریم میشه که r=4k+1 پس min مقدار r برابر 5 . که خیلی ساده هم میشه که q[SUP]2[/SUP] منفی میشه که امکان نداره پس معادله جواب نداره.


چرا سوال نمیدین جواب داشته باشه؟؟؟؟؟:confused::confused::confused::confused::confused::confused::confused:
 

golsefatan

New Member
ارسال ها
331
لایک ها
264
امتیاز
0
#10
پاسخ : جواب های اول معادله

اول اگه P فرد باشه پس توان 3 زوج میشه و میتونیم طرف چپ رو به صورت اتحاد مزدوج بنویسیم که نتیجه میشه طرف چپ بر 4 بخش پذیره پس r هم باید 2 باشه و 2r[SUP]5[/SUP]=64 و 3 حالت پیش میاد که به راحتی میشه چک کرد که جواب نداره .اگر p زوج باشه برابر 2 و 3[SUP]3p+1[/SUP]=3[SUP]7[/SUP] به پیمانه ی 4 معادله رو بگیریم میشه که r=4k+1 پس min مقدار r برابر 5 . که خیلی ساده هم میشه که q[SUP]2[/SUP] منفی میشه که امکان نداره پس معادله جواب نداره.


چرا سوال نمیدین جواب داشته باشه؟؟؟؟؟:confused::confused::confused::confused::confused::confused::confused:
ممنون از حل شما...
روش ديگه و مشابه روش شما اينه كه به پيمانه 8 بررسي مي كرديم.
چون اين سوال ها بيشتر طراحي خودمه و بيشتر جنبه آموزشي، بررسي ايده هاي مختلف حل و ... دارند (براي اينه كه بچه هايي كه مي خوان المپياد بدن خوب با ايده ها و روش هاي حل آشنا بشن و در المپياد موفق شوند)
سعي مي كنم سوالاتي هم طرح كنم كه جواب داشته باشه!
موفق و پيروز باشيد.
 

AHZolfaghari

Well-Known Member
ارسال ها
935
لایک ها
1,654
امتیاز
93
#11
پاسخ : جواب های اول معادله

تمام اعداد اول p,q را بیابید بطوریکه :
 

Dadgarnia

New Member
ارسال ها
1,350
لایک ها
1,127
امتیاز
0
#12
پاسخ : جواب های اول معادله

تمام اعداد اول p,q را بیابید بطوریکه :
ببخشید اگه یکم طولانیه راه حل های من برای سوال های نظریه اعداد همشون اینجوریند.
اول به پیمانه ی p,q در نظر می گیریم:


می دونیم که p یکی از دو عبارت بالا رو میشمره اما واضحه که p نمی تونه q+1 رو بشماره(سوال برای q=2 جوابی نداره) پس داریم:
حالا دو حالت رو در نظر می گیریم:
1-

پس به ازای یک k طبیعی خواهیم داشت:

که تناقضه و می دونیم که q+k-1 نمی تونه برابر با صفر باشه. پس این حالت جوابی نداره.
2-

پس به ازای یک k طبیعی خواهیم داشت:

اول فرض کنید q-k-1 بزرگتر از صفر باشه پس داریم:

که تناقضه. حالت بعد هم به همین ترتیب رد میشه.پس باید داشته باشیم q=k+1 که باجایگذاری درصورت سوال جواب
بدست میاد.
یه سوال خوب هم من دارم که مال مرحله سه سال 1383 است.
معادله ی
را در مجموعه ی اعداد اول حل کنید.
 

AHZolfaghari

Well-Known Member
ارسال ها
935
لایک ها
1,654
امتیاز
93
#13
پاسخ : جواب های اول معادله

ببخشید اگه یکم طولانیه راه حل های من برای سوال های نظریه اعداد همشون اینجوریند.
اول به پیمانه ی p,q در نظر می گیریم:


می دونیم که p یکی از دو عبارت بالا رو میشمره اما واضحه که p نمی تونه q+1 رو بشماره(سوال برای q=2 جوابی نداره) پس داریم:
حالا دو حالت رو در نظر می گیریم:
1-

پس به ازای یک k طبیعی خواهیم داشت:

که تناقضه و می دونیم که q+k-1 نمی تونه برابر با صفر باشه. پس این حالت جوابی نداره.
2-

پس به ازای یک k طبیعی خواهیم داشت:

اول فرض کنید q-k-1 بزرگتر از صفر باشه پس داریم:

که تناقضه. حالت بعد هم به همین ترتیب رد میشه.پس باید داشته باشیم q=k+1 که باجایگذاری درصورت سوال جواب
بدست میاد.
یه سوال خوب هم من دارم که مال مرحله سه سال 1383 است.
معادله ی
را در مجموعه ی اعداد اول حل کنید.
میدونیم :

اگه p بصورت 4k+3 باشه که اونموقع

اگه بصورت 4k +1 باشه پس با بررسی دوطرف به پیمانه 4 میفهمیم که
و چون یک مربع کامل به پیمانه 4 برابر با یک یا صفر هستش نتیجه میگیریم که
که در این صورت جوابی رو در پی نداره
اگه p=2 باشه هم که رد میشه و جواب نداره پس تنها جواب
 
بالا